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Abstract. Interaction of ethyl-2-cyanoacrylate 1 with trivalent phosphorus compounds can 
cause not only polymerization of 1, but under established conditions it affords, depending on the 
structure of the latter, betaines 3, spirophosphoranes 5. i.e. phosphorylated at the carbonyl oxygen 
esters of 2-cyanopropionic acid or 2-cyano-3-phosphoranylpropionates 9. 

2-Cyanoacrylates e.g. 1 have existed for 40 yearsl. but up till now2 only polymerization 
processes, effected by various nucleophiles, including trivalent phosphorus compounds3, have 
been known. 

We have shown that under established conditions ethyl-2-cyanoacrylate CH2=C(CN)COOEt 
1 reacts with trivalent phosphorus compounds not only wiu the anionic polymerization pathway3, 
but depending on the structure, it forms stable adducts 3, 5 or 9. 

Scheme 1 
- 

1 + R,R’P - R&H,-C(CN)COOEt 

2 3 

R = R’ = Pr (a); R = R’ = BU (b); R = RI = E~,N (c); 

R2 = (Cl-&. R’ = Et2N (d); R = Et,N. R’ = NHt-Bu (e). 

Only strong nucleophiles react via scheme 1 to form stable betaines 3. Weak nucleophiles 
(for example Ph3P) react reversibly with 1, and the equilibrium is shifted to the left. Therefore, 
under any conditions of the experimentq an excess of 1 is present in the reaction medium, and it 
instantly polymerizes. In the betaines 3 the anionic charge is significantly delocalized, which is 
revealed by IR spectra data5. The structure of products 3 follows from NMR (1H. 13C, 31P), IR 
and UV spectra data and elemental analysis datag. 

The anionic charge in 3 is not stabilized by the shift of a proton to anionic carbon, because its 
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basic@ is significantly reduced. The second possibility of the stabilization of the anionic charge in 
five-membered betaines 4’ is dosing into unsaturated ring 5. 

Scheme 2 

0 9+ CN 
1+ ‘P-NH-R _ P - CH, -i’ 
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0’ 0’1 ‘COOEt 
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4’ 

R = t-But (a), c-Hex (b) 

NHR 

5 

The betaine 4’, which is formed at the first stage of the reaction, in principal, may be 
stabilized by the shift of a proton of the group NH to the anionic centreo. But this possibility is not 
realized (the hydrogen atom is not sufficiently mobilel0), and formation of the favourable 
spirophosphorane structure 5 takes place. Stereo effects play an important role in its stabilization, 
because, for example, the analogous derivative 7 with a diethylamino group at phosphorus is rather 
unstablell. 

Scheme 3 
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Carboxylic acid esters with P-C bond, which are intramolecular-y phosphorylated at oxygen, 
were unknown. Moreover, 2-cyanoacrylates were probably the first representatives of acrylic acids 
esters with an unsubstituted group CH2, which successfully react with P(III) to afford betaines 3 
and spirophosphoranes 5, 7. 
In the case of the formation of low stable betaines 8’a,b in reaction between 1 and phosphites, 
anions 8’a,b may be trapped by protons of the oxygroups of starting phosphites 8a,b (scheme 4). 
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Probably, scheme 4 depicts the general principle of the preparation of spirophosphoranes which 
are derivatives of 2-cyanopropionate. The principle includes the creation of the conditions under 
which selfprotonation of the anion occurs simultaneously with the inclusion of phosphorus into the 
ring. 
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o-C6H402P( =NPh)CH2CH(CN)COOR ( b 31P 20.0) and then into its dimer ( 6 31P 

-53.0). 
Addition of I to 6 led to instant formation of 7, the structure of which was confirmed with 
NMR (19 13C, 31P) and IR data. Selected spectra data as follow: d 31P -11.27 (C6H6); 
1H NMR (C6D6) 3.01 (d, CCH2P, JPH = 5.2 HZ); 13C NMR (Ccl,) 33.01 (d, CH2P, 
Jpc= 149.5 Hz). 146.45 (d, CCN, JpC = 7.9 Hz), 166.0 (d, C-OEt, Jpc = 22.4 Hz); IR 
(cm-l CCl4) 1634 (C=C), 2203 (CN). After several days an NMR spectrum detected the 
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